Improved R2* liver iron concentration assessment using a novel fuzzy c-mean clustering scheme
نویسندگان
چکیده
منابع مشابه
Improved R2* liver iron concentration assessment using a novel fuzzy c-mean clustering scheme
BACKGROUND In thalassemia patients, R2* liver iron concentration (LIC) measurement is a common clinical tool for assessing iron overload and for determining necessary chelator dose and evaluating its efficacy. Despite the importance of accurate LIC measurement, existing methods suffer from LIC variability, especially at the severe iron overload range due to inclusion of vessel parts in LIC calc...
متن کاملImage Segmentation: Type–2 Fuzzy Possibilistic C-Mean Clustering Approach
Image segmentation is an essential issue in image description and classification. Currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. Moreover, there are many uncertainties and vagueness in images, which crisp clustering and even Type-1 fuzzy clustering could not handle. Hence, Type-...
متن کاملType-II Fuzzy Possibilistic C-Mean Clustering
Fuzzy clustering is well known as a robust and efficient way to reduce computation cost to obtain the better results. In the literature, many robust fuzzy clustering models have been presented such as Fuzzy C-Mean (FCM) and Possibilistic C-Mean (PCM), where these methods are Type-I Fuzzy clustering. Type-II Fuzzy sets, on the other hand, can provide better performance than Type-I Fuzzy sets, es...
متن کاملimage segmentation: type–2 fuzzy possibilistic c-mean clustering approach
image segmentation is an essential issue in image description and classification. currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. moreover, there are many uncertainties and vagueness in images, which crisp clustering and even type-1 fuzzy clustering could not handle. hence, type-...
متن کاملOPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Medical Imaging
سال: 2015
ISSN: 1471-2342
DOI: 10.1186/s12880-015-0097-5